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Abstract— Path smoothing is an important operation in
a number of path planning applications. While several ap-
proaches have been proposed in the literature, a lack of
simple and effective methods with quality-based termination
conditions can be observed. In this paper we propose a
deterministic shortcut-based smoothing method that is simple
to be implemented and achieves user-specified termination
conditions based on solution quality, overcoming one of the
main limitations observed in traditional random-based ap-
proaches. We present several benchmarks demonstrating that
our method produces higher-quality results when compared to
the traditional random shortcuts approach.

I. INTRODUCTION

Path smoothing is an important operation that appears in

a number of path planning applications. Path smoothing is

often used to smooth the result of a sampling-based planner,

or to deform a path in order to achieve desired qualities,

such as maintaining a desired distance from obstacles or

controlling a given quality aspect. In applications relying on

multiple paths, such as in multi-agent path finding problems,

relying on a simple and efficient smoothing method with

controlled quality becomes particularly important given that

the quality of one smoothed path may influence the space

available for smoothing the other paths.

In this paper, we propose a Deterministic Shortcut-based

Smoothing (DSS) method which overcomes the main lim-

itations of previous shortcut-based methods by being able

to consider user-specified termination conditions based on

solution quality. At each iteration, our method first identifies

a vertex on the path that has the most potential for path

improvement, and then applies one of two possible shortcut-

based smoothing operations.

As a result, our prioritized shortcut selection and quality-

based termination conditions result in a method that outper-

forms a traditional implementation of the random shortcut

approach, both in terms of path length and in worst-case

angle measured along the path. In this work, similarly to

previous work on this area, we consider a path to be repre-

sented as a polygonal line. We present several benchmarks

demonstrating that, for the same amount of smoothing time,

our method produces higher-quality paths when compared to

the traditional random shortcut approach [4], [6], [7], [10].

II. RELATED WORK

Path smoothing methods are tightly related to path plan-

ning. For instance, sampling-based methods, such as the
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Rapidly-Exploring Random Tree (RRT), have influenced the

need for efficient path smoothing algorithms. These methods

have become popular over the last decade, in part given their

ability to address problems in high-dimensional spaces [1],

[13]. Sampling-based algorithms highly depend on collision

checking in order to determine the feasibility of each search

expansion, and the sampling nature of the strategy often

produces paths with excessive bends and turns, leading to

the need of a post-processing smoothing step.

Path smoothing and optimization are topics which have

been studied by many researchers. While some methods,

like ours, are based on iterative shortcuts, a wide range of

different techniques have been proposed. A summary of the

state of the art has been proposed by Abhijeet Ravankar et

al. [11], which also highlights the importance of considering

dynamic and kinematic constraints in path planning and

optimization. From a broad point of view, we classify the

main methods as generic optimization-based techniques and

shortcut-based iterative methods.

Optimization Techniques Optimization techniques are

often employed to optimize trajectories. These methods

require appropriate objective functions, collision checking

with obstacles, and constraints on velocity and acceleration

in order to achieve smooth trajectories [3].

For instance, Jia Pan et al. presented a path optimization

technique based on local spline refinement in order to

compute smooth, collision-free paths in narrow passages and

satisfy velocity and acceleration constraints [9]. CHOMP

optimizes an initial trajectory iteratively using Covariant

Hamiltonian gradient descent [14]. Hui Yang et al. presented

a gradient-free optimization technique which they call the

Double Layer Ant Algorithm [12]. The authors perform

Turning Point Optimization and Piecewise B-spline smooth-

ing to improve the input path.

In general the performance of optimization methods highly

depend on the specific types of input trajectories. Slow con-

vergence can be observed when the input requires significant

improvement. The complexity of implementation may also

be seen as a barrier for integration in practical applications.

Our method is related to shortcut-based methods which have

become popular given their simplicity and effective results.

Methods Based on Iterative Shortcuts Shortcut-based

methods provide a simple and effective approach to path

optimization [4], [7], [10]. Heuristic methods based on

random shortcuts replace jerky portions of a path with shorter

segments, the shortcuts, after checking that the segments are

collision free. Shortcuts are often determined by randomly

sampling its endpoints along the path. The implementation

of shortcut-based techniques is simple, fast, and produces
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high-quality paths in many cases [4], [8].

A number of specific implementations of the approach

have been proposed. For instance, David Hsu et al. describe

a technique that removes redundant motions on a path [7],

and terminates the procedure if the improvement falls below

a threshold. In contrast our work introduces simple metrics

for defining a termination condition that is quality-based,

such that the produced results will meet the specified quality-

based threshold.

The Cutting-triangle’s-edge algorithm presented by Reda

Guernane et al. [5] produces shortcuts by connecting the

midpoints of adjacent path segments in the path. The dy-

namic and kinematic constraints of the robot are also taken

into account to define cubic polynomials which smooth edge

discontinuities, however difficult corners may not be possible

to be improved. The shortcut-based method proposed by

Mylène Campana et al. [2] is a gradient-based technique

that uses backtracking when a collision is detected on the

most recent iteration of the algorithm. It has advantages over

random methods, however, it requires the computation of

gradients. In comparison to these methods, our method is

gradient-free and focuses on efficiency for 2D applications by

developing specific geometric tests for generating shortcuts

that can remove large unneeded portions of the input path.

One main point of our method is that it is deterministic. An

important drawback of methods based on the random selec-

tion of shortcuts is that they may miss tight areas difficult to

be sampled. This may lead to sharp corners left unoptimized

in the resulting path. Our deterministic way of selecting

where to perform the next path improvement addresses this

limitation. The approach also leads to the ability to define

quality-based termination conditions, which allows us to

produce paths that satisfy given limits controlling smoothness

and clearance. Our current work focuses on 2D applications

and we show improved results when comparing against a

regular implementation of the random shortcuts approach.

III. METHODOLOGY

In the scope of this work we address the particular case

of 2D polygonal paths. We consider that the input polygonal

path P is defined by an ordered set P = {v1,v2, ...,vN}
containing N vertices. The path connects the starting lo-

cation v1 to the goal location vN . Environments are 2-

dimensional and described by a set of polygonal obstacles

O = {O1, O2, ..., OM}.

Our goal is to minimize the length of P and maximize

the smallest angle between two adjacent P segments, while

maintaining P collision-free and fixed at v1 and vN .

Our proposed Deterministic Shortcut-based Smoothing

(DSS) method is based on two geometric shortcut determi-

nation procedures: the Disk Test and the Corner Test. These

procedures will first test if a shortcut can be performed with

respect to a given vertex, and if so, that shortcut is returned

and the path is improved; otherwise, a label done is returned

and the overall algorithm stops.

A. Disk Test

The Disk Test is outlined in algorithm 1. The Disk Test

follows a greedy selection process: at every iteration, we

optimize the path at the vertex with the most free space

around it. First, for every non-terminal vertex vi, we start

by calculating the minimum Euclidean distance to every

obstacle in the environment:

dmin(vi) = min
Oj∈O

D(vi, Oj), ∀i ∈ {2, 3, ..., N − 1},

where O is the set of obstacles, Oj is an obstacle in the

environment and D is a function that returns the minimum

distance from the polygonal obstacles to a vertex in the path.

This distance serves as a proxy for the free space available

around a vertex. We then determine the vertex with the most

free space v∗, which is the vertex such that:

dmin(v
∗) = d∗ = max dmin(vi), ∀i ∈ {2, 3, ..., N − 1}.

Distance d∗ is then used as the radius of a circle centered

at v∗, which we call C. The points of intersection between

C and the path form the endpoints of the shortcut with which

we will update the path.

Algorithm 1: Disk Test

Data: input path P as a set of vertices

for every vertex vi in P \ (v0, vn) do
di ← minO D(vi, O)

end
if TerminationConditionsAreMet() then

return done

r ← max(di)
v∗ ← P [index(max(di))]
s = (p1,p2) ← PointsOfCircleIntersection(r, v∗)

return s

When there are fewer than two points of intersection be-

tween the circle and the path, then the circle must encompass

one or both of the endpoints of the path. Therefore, in

such cases, we choose those encompassed path endpoints

as the endpoints of the shortcut. Additionally, if there are

more than two intersections, then we choose the earliest and

latest among those intersections, with respect to each path

direction, as the shortcut endpoints.

The overall Disk Test procedure is summarized in Algo-

rithm 1.

B. Corner Test

The Corner Test has similarities with the Disk Test;

however, the key difference is that it only considers a subset

of the obstacles. For every vertex, excluding the start and

end vertices, a corner is defined as the triplet consisting of

the previous vertex, the current vertex, and the next vertex.

The Corner Test computes the same distance to the obstacles

as with the Disk Test, except that now only obstacles that

are inside of the corner region defined by the corner are

considered, as defined below.
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d

Fig. 1: An example of the Corner test: an environment
including two obstacles, v∗ the vertex with the most free
space (largest radius di called d∗), the convex region R in
yellow, and shortcut s in green.

Given a corner (v0,v1,v2), we define the corner region as

the region in-between the rays (v1,v0) and (v1,v2). While

the Corner Test searches for obstacles at any distance from

v∗, it limits our choice of shortcut endpoints to be inside the

sub-path delimited by rays (v1,v0) and (v1,v2).

When the number of intersections between the circle and

the path is not exactly 2, we choose the shortcut endpoints in

the same way as described for the Disk Test. However, when

applying the Corner Test, we limit the shortcut endpoints to

not exceed the previous and next vertices of v∗. The pseudo-

code for the procedure is given in Algorithm 2.

In Figure 1, the region R, shown here in yellow, is the only

area where obstacles are considered. A shortcut s is then built

from the intersection of C and path P . With the Corner Test

the generated shortcut is not allowed to go outside the corner

region.

C. Termination Condition

We define a termination condition based on the quality

of the solution, according to two criteria. When one of the

two quality criteria are met for every vertex, the smoothing

iterations stop and the algorithm terminates.

The first criterion determines, for a given vertex v, if

v is within the threshold distance to any obstacle in the

environment. This means that v is already at the limit

distance to the obstacles and cannot be further optimized.

The second criterion is a measure of smoothness around v
that is simply based on the angle between the two path edges

sharing v. If the angle is larger than a desired threshold, then

this criterion is met for v.

When these criteria are met for a given vertex it means

that the vertex is not suitable for optimization, and will not

be chosen as v∗. When every vertex satisfies at least one of

these criteria, then the optimization terminates.

D. DSS Method

At each iteration of our proposed DSS method one of the

two shortcut determination tests presented in the previous

subsections is employed. Figures 2 and 3 illustrate cases in

Algorithm 2: Corner Test

Data: input path P as a set of vertices

for every vertex vi in P \ (v0, vn) do
Y ← subset of O that is in corner region

di ← minY D(vi, Y )
end
if TerminationConditionsAreMet() then

return done

r ← max(di)
v∗ ← P [index(max(di))]
s = (p1,p2) ← PointsOfCircleIntersection(r, v∗)

return s

v∗

sc
sd

R

sc

R

sd

Input path Disk Corner

Fig. 2: Comparative example between shortcuts sc (in red)
and sd (in green) obtained, respectively, with the Corner
Test and the Disk Test. Here the Corner Test provides the
longest shortcut because it only considers obstacles inside
the corner region R.

v∗

sd

sc

R

sd

sc

R

d

c

Initial path Disk Corner

Fig. 3: Comparative example between shortcuts sc (in red)
and sd (in green) obtained, respectively, with the Corner Test
and the Disk Test. The corner region R is shown in yellow.
Here the Disk Test provides the longest shortcut.
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which either the Corner or Disk Test can be most advanta-

geous.

We first consider the Corner Test because we have found

it to be, most of the time, the better operation to perform.

Considering Figure 2, it is possible to see that when the

obstacles in the corner region are far away, the shortcuts

tend to be longer. In this case, the Corner Test makes a

more useful shortcut than the Disk Test, since there might

be obstacles not inside corner region which are closer to v∗.

On the other hand, if the distance from the obstacles to v∗ is

the same on both sides of the path, or the closest obstacle is

in the corner region, then it is more advantageous to employ

the Disk Test.

Therefore we first check if the Corner Test provides an

effective shortcut, and if not, we then compute the result

of the Disk Test and compare the two obtained shortcuts

in order to select the best one. The pseudocode for DSS

is given in Algorithm 3 (we note here that the termination

conditions are handled in the Corner Test and Disk Test

functions). Finally, note that the order in which the vertices

are processed may affect the determination of v∗.

Using a single test (Corner or Disk) does not always

perform well in terms of length, sharpest angle, and average

angle, which are our metrics of interest. Therefore, we define

parameters δ and k to specify how DSS should decide

which method is better at the current iteration. Parameter k
represents a factor applied to the radius of the circle used

to derive the Corner Test’s shortcut. When the length of

the shortcut is much smaller than the radius of the circle,

DSS chooses to also consider the shortcut provided by the

Disk Test. Since no chord of a circle can be larger than the

diameter, it does not make sense to choose k > 2. Parameter

δ provides a similar discrimination, but according to the

absolute distance of the shortcut from the Corner test, rather

than its ratio to the radius. Regardless of the used parameter

values, if the Disk Test is considered, then its shortcut is

compared with the shortcut obtained from the Corner Test,

and the shortcut with greater length is ultimately used.

Algorithm 3: DSS (δ, k)

Data: δ, k: Selection parameters, O: Obstacles, P :

Current path

InitializeEnvironment(P, O)

s1 = CornerTest()

if s1.length < δ + s1.r · k then
s2 = DiskTest()

if s2.length > s1.length then
UpdatePath(P , s2)

else
UpdatePath(P , s1)

end
else

UpdatePath(P , s1)

end

Initial path Randomized DSS Corner Disk

Fig. 4: Results produced by DSS, DSS with only the Corner
Test, DSS with only the Disk Test and Random Shortcuts in
an environment with obstacles of diverse shapes.

Initial path Randomized DSS Corner Disk

Fig. 5: Results produced by DSS, DSS with only the Corner
Test, DSS with only the Disk Test and Random Shortcuts in
an environment with regularly spaced obstacles.

IV. EVALUATION AND RESULTS

We validated our DSS method and compared it against

a regular implementation of the Random Shortcuts method

in five different environments which contained a variety

of convex and non-convex obstacles of different sizes and

placements. Both methods only address static obstacles.

Our implementation of the Random Shortcuts is based on:

1) sampling random pairs of points along the current path,

2) checking if the shortcut connecting a pair of points is

collision-free and respecting the given minimum clearance,

and 3) if that is the case, the respective path section is

replaced with the sampled shortcut. This implementation

reflects how the approach is mostly used, or cited, in previous

work [6].

We performed 50 trials for each environment. For every

environment, a trial consisted of: (1) randomly choosing start

and goal locations, (2) optimizing a path result computed

with an RRT implementation, and (3) optimizing the path

using the methods being compared.

The three metrics we used to compare the algorithms,

which are common in the literature [2], [10], are average
angle, sharpest angle and average length. The first two
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Metric Method Environment
Mixed Interlocked Regular Simple Office

Avg Angle Random 152.34 143.99 149.46 141.93 143.31
Corner 174.18 175.39 173.52 166.63 173.15
Disk 169.29 169.41 173.52 172.74 173.93
DSS 174.68 175.41 173.67 166.54 172.95

Sharpest Angle Random 88.60 80.10 81.25 83.9 83.39
Corner 144.11 147.86 138.63 131.20 144.95
Disk 127.74 132.28 123.87 137.49 143.14
DSS 145.23 147.93 139.99 130.15 144.88

Avg Length Random 16.34 17.47 15.10 18.05 15.26
Corner 16.43 17.44 15.05 19.35 15.59
Disk 16.97 18.16 15.47 18.34 15.57
DSS 16.27 17.52 14.98 19.42 15.57

TABLE I: Table showing the path properties after optimizing

with different methods in 5 test environments.

metrics capture how smooth the final solution is, while

the last metric captures the cost of traversal for the final

solution. If the average angle is larger, the path is considered

smoother. These metrics are useful to determine a path that is

easier and faster to traverse for robots with typical dynamic

constraints [11].

For comparison, we implemented the Random Shortcut

method and ran it for the same amount of time as the DSS

method.

Each iteration of our method must find the distance

between each vertex and the nearest obstacle which we com-

pute by iterating over every pair. Therefore, each iteration of

our method takes O(NL) running time: where N is the total

number of vertices in a path and L is the total number of

edges of all the obstacles.

Figure 4 represents a visualization of DSS versus Random

Shortcuts in one of our test environments. We circled and

zoomed the regions of interest. Figure 4 shows that DSS

produces a final path in green which is smoother and shorter

than the final path obtained by regular Random shortcuts.

Due to the sharpest angle in the final path produced by

Random Shortcuts (method shown in black), we can say DSS

is smoother.

Figure 5 shows a similar improvement as in figure 4 when

using the DSS method.

Table I shows the performance for δ = 2.0 and k = 0.0.

In almost all scenarios, DSS performs better in terms of

average angles and sharpest angles, as well as average length.

DSS with only the Disk Test performs better than DSS with

only Corner Test in the Simple environment, as expected

according to the discussion presented in Section III.

While our current method proves to be more effective

than the regular random selection of shortcuts, a number of

additional combinations of the proposed deterministic tests

and selection parameters can be explored which we however

leave for future work.

V. CONCLUSION

We show that the proposed priority-based deterministic

shortcut selection method, for the same amount of compu-

tation time, produces comparable and in many cases better

results than the regular random selection of shortcuts in terms

of path length and smoothness.

In general, the corner test is more advantageous since it

can safely ignore some of the obstacles in the environment,

however the disk test is more effective in particular cases. A

promising future work is to include a characterization of the

complexity of the environment in relation to the performance

of either the corner test or the disk test.

More generally this paper shows that simple geometric

tests can improve the performance of shortcut-based path

smoothing techniques, motivating further developments in

this area. We intend to further improve our path optimization

method by employing Bézier curves as path segments in or-

der to produce C2 continuity and the opportunity to address

curvature constraints to the resulting optimized paths.
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